918 research outputs found

    3-manifolds which are spacelike slices of flat spacetimes

    Full text link
    We continue work initiated in a 1990 preprint of Mess giving a geometric parameterization of the moduli space of classical solutions to Einstein's equations in 2+1 dimensions with cosmological constant 0 or -1 (the case +1 has been worked out in the interim by the present author). In this paper we make a first step toward the 3+1-dimensional case by determining exactly which closed 3-manifolds M^3 arise as spacelike slices of flat spacetimes, and by finding all possible holonomy homomorphisms pi_1(M^3) to ISO(3,1).Comment: 10 page

    Efficient Behavior of Small-World Networks

    Full text link
    We introduce the concept of efficiency of a network, measuring how efficiently it exchanges information. By using this simple measure small-world networks are seen as systems that are both globally and locally efficient. This allows to give a clear physical meaning to the concept of small-world, and also to perform a precise quantitative a nalysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.Comment: 1 figure, 2 tables. Revised version. Accepted for publication in Phys. Rev. Let

    Modularity produces small-world networks with dynamical time-scale separation

    Full text link
    The functional consequences of local and global dynamics can be very different in natural systems. Many such systems have a network description that exhibits strong local clustering as well as high communication efficiency, often termed as small-world networks (SWN). We show that modular organization in otherwise random networks generically give rise to SWN, with a characteristic time-scale separation between fast intra-modular and slow inter-modular processes. The universality of this dynamical signature, that distinguishes modular networks from earlier models of SWN, is demonstrated by processes as different as spin-ordering, synchronization and diffusion.Comment: 6 pages, 7 figures. Published version, Results and figures of additional dynamics have been include

    Nonlocal mechanism for cluster synchronization in neural circuits

    Full text link
    The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales.Comment: 8 pges, 6 figure

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Scale-free brain functional networks

    Get PDF
    Functional magnetic resonance imaging (fMRI) is used to extract {\em functional networks} connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that: (a) the distribution of functional connections, and the probability of finding a link vs. distance are both scale-free, (b) the characteristic path length is small and comparable with those of equivalent random networks, and (c) the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small world networks, reflect important functional information about brain states.Comment: 4 pages, 5 figures, 2 table

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    Dirty money: a matter of bacterial survival, adherence, and toxicity

    Get PDF
    In this study we report the underlying reasons to why bacteria are present on banknotes and coins. Despite the use of credit cards, mobile phone apps, near-field-communication systems, and cryptocurrencies such as bitcoins which are replacing the use of hard currencies, cash exchanges still make up a significant means of exchange for a wide range of purchases. The literature is awash with data that highlights that both coins and banknotes are frequently identified as fomites for a wide range of microorganisms. However, most of these publications fail to provide any insight into the extent to which bacteria adhere and persist on money. We treated the various currencies used in this study as microcosms, and the bacterial loading from human hands as the corresponding microbiome. We show that the substrate from which banknotes are produced have a significant influence on both the survival and adherence of bacteria to banknotes. Smooth, polymer surfaces provide a poor means of adherence and survival, while coarser and more fibrous surfaces provide strong bacterial adherence and an environment to survive on. Coins were found to be strongly inhibitory to bacteria with a relatively rapid decline in survival on almost all coin surfaces tested. The inhibitory influence of coins was demonstrated through the use of antimicrobial disks made from coins. Despite the toxic effects of coins on many bacteria, bacteria do have the ability to adapt to the presence of coins in their environment which goes some way to explain the persistent presence of low levels of bacteria on coins in circulatio

    Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices

    Get PDF
    The study of electron motion in semiconductor billiards has elucidated our understanding of quantum interference and quantum chaos. The central assumption is that ionized donors generate only minor perturbations to the electron trajectories, which are determined by scattering from billiard walls. We use magnetoconductance fluctuations as a probe of the quantum interference and show that these fluctuations change radically when the scattering landscape is modified by thermally-induced charge displacement between donor sites. Our results challenge the accepted understanding of quantum interference effects in nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
    • …
    corecore